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LElTER TO THE EDITOR 

Explicit path integration on homogeneous spaces 

Georg Junker 
Physikalisches Institut der Universitat Wurzburg, Am Hubland, 8700 Wurzburg, Federal 
Republic of Germany 

Received 8 March 1989 

Abstract. The path integral for the free quantum motion on an arbitrary homogeneous 
space A is considered. We expand the short-time propagator in unitary irreducible 
representations of the transformation group on A. The path integral is performed explicitly 
by using the orthogonality of the representations. The correct normalised wavefunctions 
are given by associate spherical functions and the energy spectrum is obtained from the 
time derivative of the Fourier coefficients of the expansion. 

The path integral for the quantum propagator on symmetric spaces has attracted much 
attention in recent years. The quantum dynamics on the manifold of simple compact 
and non-compact Lie groups has been discussed extensively [ 1,2]. Other problems 
of interest are related to the quantum propagation on spaces with constant positive 
[2-41 and negative [4,5] curvature. For example, quantum chaos is studied for the 
free particle moving on a manifold of constant negative curvature [ 5 ] .  Therefore, it 
is certainly important to study the dynamics in curved spaces [6]. The quantisation 
of such systems may be achieved by the method of Feynman [7]. 

In this letter we present a general prescription for the path integration on a 
homogeneous space ./U, which may be viewed as a coset space G/H.  Here G is the 
transformation group acting on A, i.e. x + x’ = gx, where g is a group element of the 
transformation group G. H is the stability group of a fixed point a on 4, ha=a,  
V h  E H. The path integration is performed explicitly for an arbitrary homogeneous 
space. We will obtain a general formula for the energy eigenvalues and also the 
normalised wavefunctions. As an example, we consider the Klein-Gordon propagator 
in an n-dimensional flat space. 

Our starting point is the path integral representation of the transition amplitude 
for a free quantum system on a homogeneous space ./U evolving from initial state lx,) 
to the final configuration Ixb) in the time T = fb - fa. In the usual sliced time basis, 
T = NE, this propagator is given by 

N-1 
K ( x b ,  x,, T) = lim n K ( x j ,  xjPl, E )  n dxj. 

N - m  I” i = l  i = I  

We have adopted the standard notation: xj =x(tj), xb = X, and x, = xo. dx is the 
invariant measure on A. For compact spaces we have j A  dx = IAI, where 141 is the 
volume of A. In Feynman’s path integral approach the short-time propagator is 
assumed to be given in the semiclassical form [7] 
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where the classical action Sj along the short-time interval E is approximated by 

S j = I r J  L(x,x)dt=L(hx,/&,i ,)& AX. I J  = X. - xjP1 i, = f ( ~ ,  + ~ j . . ] ) .  
r,-1 

In the Hamiltonian path integral formulation the short-time propagator is taken to be 
the matrix element of the time evolution operator for a small time interval E :  

K(xj ,  X j - 1 ,  E )  =(X,[exp(-(i/fi)H(p, x ) ~ l l x j - ~ ) ~ ( ~ j l 1  - ( i / f i ) H ( ~ ,  X)E)IXj-1)* 

In the following discussion we will not restrict the short-time propagator to be of 
the Lagrangian or Hamiltonian type. Our treatment will be applicable to both formula- 
tions. All we need to assume is that the short-time propagator for the free motion on 
a homogeneous manifold Jic is invariant under translations: K ( x j ,  E )  = 
K ( x j ,  XI!-, , E ) ,  where xj = gx,, V j  = 0, 1, . . . , N. Choosing a fixed point Q on ./U, an 
arbitrary xi E A may be obtained through a local transformation: 

X, = g,Q g, E G. (2) 

Local means that for each short-time variable xj a different group transformation gj 
has to be used. As already mentioned, the stability group H is the subgroup of G 
leaving the fixed vector a invariant: ha = a, V h  E H c G. The homogeneous manifold 
A can be identified with the coset space G/H. With this construction, the short-time 
propagator may be viewed as a function on the group manifold of G;  K ( x j ,  xi-], E )  = 
K(gj, gj-l, E ) .  From the translation invariance it follows that this is a function of the 
combination g;.,g only: 

K(gj, gj-1, E )  = K(ggi, ggi-1, E )  = K(gy-~gj, E ) .  (3) 

On the other hand, multiplying any group element g, in (2) from the right with an 
arbitrary element of the stationary group H gives rise to the same xj.  Obviously, the 
short-time propagator (3) is invariant with respect to left and right multiplication by 
an arbitrary element of the subgroup H: 

K(g, E )  = K W g h , ,  E )  hi ,  h z ~  H. (4) 

This property is the defining equation of the so-called zonal spherical functions [ 8 ] .  
Let us consider a unitary irreducible representation 1 of the group G, which 

associates with each element g E G a unitary operator 9 ' ( g )  in a Hilbert space X'(G/H). 
Introducing a basis {bk} ,  k = 0, 1 ,2 , .  . . , dim(%' - l ) ,  in this space the matrix elements 
of the representation 1 are given by ka!,,,(g) = (b,,,19'(g)/bm). Furthermore, it is known 
that ?"I contains a vector [ a )  that is invariant under H, i.e. 9'(h)la) = I Q ) ,  V h  E H. The 
subspace of X' defined by this condition is one dimensional [9]. Choosing the basis 
{ b k }  in such a way that Ib,) = I Q ) ,  the matrix elements 9&,(g) = (al9'(g)la) are the zonal 
spherical functions of the representation 1. The functions 9&(g) form a complete set 
for any zonal spherical function in the Hilbert space %(G/H) = Of%'. In other words, 
any function f(g), constant on the two-sided coset (H\G/H), can be decomposed in 
zonal spherical functions of unitary irreducible representations [ 101 : 

In the above, $, stands for the orthogonal sum of non-equivalent unitary irreducible 
representations. The question regarding which representations have to be encountered 
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in this sum is in principle answered by the Frobenius theorem [ 111. The number dl is 
defined by the orthogonality relation 1, 9ho(g )9g(g )  dg = a(/’, I)/dl, where a(Z’, I) = 
SI,, for discrete and a(/’, I)  = S (  I f -  1 )  for continuous representation (‘angular momen- 
tum’) labels, respectively. For compact groups dl is the dimension of the corresponding 
representation. Unitary irreducible representations of non-compact groups are infinite 
dimensional. However, we may call dl the ‘dimension’ in this case, too. 

We have already mentioned that the short-time propagator (4) is a zonal spherical 
function. Consequently, it may be decomposed into 

Furthermore, through relation (2) we may identify the coordinates of xr with those 
parameters of the group element gj which do not belong to the subgroup H. Therefore, 
the volume element dxj appearing in the path integral ( l ) ,  may be changed into the 
normalised Haar measure of the group G by multiplication with the identity 1 = 1, dh 
[91: 

dx, = dg,. (8) 

The volume 1.41 of the space appears because of the relation \&I = 5, dx = l&IJ, dg. 
Formally, it may be viewed as the ‘Jacobian’ a(r)/d(g) = I&/. 

Inserting everything into the path integral, we obtain 

1, 

Making use of the orthogonality relation 

the integration in (9) is easily performed and yields 

With the group composition law 9L(g i1gN)  = & , 9 k O ( g N ) 9 ~ o ( g o ) ,  the propagator 
may be written in the standard form 

I 

where 
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are the energy spectrum and normalised wavefunctions, respectively. The matrix 
elements 9k0(g) are called associate spherical functions [8,10]. They are eigenfunc- 
tions of the Laplace-Beltrami operator on A = G/H. The limit in (13) can be calculated 
from the Taylor expansion 

lim [IAV;( T/ N)IN = lim 
N - m  N-02 

where & E )  = (d/dE)J(E). In the last step we have made use of the normalisation 
K(x, a, 0) = 6 ( x - a )  = S(g)/lAl to find J ( 0 )  = 1/IMI. Hence, the energy spectrum is 
given by the time derivative of the Fourier coefficient at E =0: 

E! = ihl.,&E(O). (15) 
It is worth mentioning that if the Fourier coefficients are given in the form J (  E )  = 

(.,&I-' exp[ - ( i / h )E ,~ ] ,  the short-time propagator and the finite-time propagator are of 
the same form. Another point worth mentioning is the following. In (11) we have 
seen that the propagator is a zonal spherical function depending on the group element 
gG1gN. It is known that zonal functions on rank-one spaces depend only on one 
variable. This parameter may be identified with the geodesic distance s between the 
initial and final position. On the other hand, the classical action is given by SCI = ms2/2T 
and therefore the propagator depends on the classical action only. 

As an example we consider the relativistic spinless free particle in n dimensions 
described by the Hamiltonian H = c( p 2  + m2c2)1/2. In the Hamiltonian form the 
short-time propagator has been calculated by Fukutaka and Kashiwa [3] and may be 
expressed in terms of modified Bessel functions of the third kind, 

The transformation group of R" is the Euclidean group in n dimensions, being the 
semi-direct product of translations and rotations, G = T" BSO( n) .  Taking the fixed 
vector a to be the origin, the stationary group is H = SO( n) .  The corresponding zonal 
spherical functions are given by Bessel functions [lo], 9&(g) = 
r( n / 2 ) ( 2 / k r ) ' " - 2 ' / 2 J ~ , _ 2 , / 2 (  k r ) .  Here r is the radial polar coordinate of the translation 
vector in the group element g. For g=g;_',g, we have r = l A x j l .  The representation 
label k is related to the conserved linear momentum, IpI = hk. With the 'dimension' 
[12] dk = k"-1/[2"-1~"/2T(n/2)] the Fourier coefficient is found to be fk(&) = 
exp[ - (i&c/A)(m2c2+ h 2 k 2 ) 1 / 2 ]  and the correct energy spectrum is obtained, Ek = 
c(m2c2+ h'k2)1'2. Note that the invariant measure on R" is identical with the Haar 
measure of T", i.e. IR"I = 1. Due to the exponential form of A(&), the finite-time 
propagator has the same form as the short-time propagator (16) and may be expressed 
as a hypergeometric series 

K ( x b ,  x,, T) = y (-"'-) 21rihT "I2  exp( f Scl) 2F0( -n /2 ,  ( n  + 2)/2; ihy/2mc2T) (17) 

where ScI = -mc2 T/ y is the classical action and y = [ 1 - (xb - x,l2/ c2 T2]-1/2. It is an 
interesting fact that the semiclassical approximation becomes exact for 'space 
dimension' n = -2 and 0. 

Other examples, which can be put into this general formalism, are the non-relativistic 
quantum propagators in n-dimensional spaces of constant positive and negative cur- 
vature, which may be identified with the coset spaces SO( n + 1)/SO( n) and 



letter to the Editor L591 

SO(n, l) /SO(n),  respectively [4]. The ordinary free particle in flat space can also be 
treated in this way [12]. A detailed discussion will be published elsewhere [13]. 

The present formalism is also applicable to the path integration on group spaces 
itself. In this case the subgroup reduces to the identity, H = { e } .  The corresponding 
zonal spherical functions are the group characters of unitary irreducible representations, 
,y'(g)=Tr 9'(g) [8]. The result is the same as that obtained by Dowker [l]. 

In this letter we have presented a general prescription for the explicit path integration 
of a system evolving freely in a homogeneous space. However, the present procedure 
is also applicable to the general problem including an external potential. Here the 
translation invariance is broken by the potential. However, the expansion in zonal 
spherical functions is still applicable to that part of the short-time propagator which 
contains only the kinetic energy. For potentials with a remaining space symmetry the 
path integration can be performed partially. For example, in a spherical symmetric 
problem the angular integration can immediately be done using the above method. 
The remaining part of the short-time propagator is still a function on the group manifold 
and the general Fourier decomposition can be applied. However, the zonal spherical 
functions are no longer a complete set and the contributions of the associate spherical 
functions (14) have to be included. In this case the path integral does not lead to a 
simple form like (12) but gives rise to a perturbative expansion for the propagator. 

It would also be interesting to consider the problem where the transformation group 
is broken into a discrete subgroup. This happens in the study of quantum chaos where 
the motion on a compact space of constant negative curvature is investigated [5]. 

For systems having a dynamical symmetry the present formalism can be used. By 
introducing additional space dimensions the path integral can be changed into that of 
a free particle moving on the dynamical group manifold [4]. Then one may proceed 
as described above for the special case with H = { e } .  

In a final remark we would like to mention that the expansion in unitary irreducible 
group representations is not only useful for the path integral evaluation of ordinary 
quantum mechanics, but may also be applied in the path integral formulation of field 
theories. Indeed, in pure lattice gauge theories the expansion in group characters is 
used extensively. However, our method can also be applied to gauge-Higgs models 
and lattice fermions [14]. 

The author would like to thank Professor Bohm for many fruitful discussions and also 
gratefully acknowledges the support of the Studienstiftung des Deutschen Volkes. 
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